A Multi-Task Matrix Factorized Graph Neural Network for Co-Prediction of Zone-Based and OD-Based Ride-Hailing Demand
نویسندگان
چکیده
Ride-hailing service has witnessed a dramatic growth over the past decade but meanwhile raised various challenging issues, one of which is how to provide timely and accurate short-term prediction supply demand. While predictions for zone-based demand have been extensively studied, much less efforts paid origin-destination (OD) based (namely, originating from zone another). However, OD-based even more important worth further explorations, since it provides elaborate trip information in near future as reference fine-grained operations, such routing matching shared ride-hailing services that pick up drop off two or passengers each ride. Simultaneous both can be an interesting practical problem platforms. To address issue, we propose multi-task matrix factorized graph neural network (MT-MF-GCN), consists major components: (1) GCN (graph convolutional network) basic module captures spatial correlations among zones via mixture-model (MGC) network, (2) factorization By evaluations on real-world on-demand data Manhattan Haikou, show proposed model outperforms state-of-the-art baseline methods zone- predictions.
منابع مشابه
task-based instruction, consciousness-raising and iranian efl learners acquisition and use of collocation
the present study sought to examine whether a task-based approach could have an impact on raising awareness of collocations. moreover, it sought to investigate the facilitative role of consciousness-raising tasks of collocations in the communicative instances of use. to this end, 68 intermediate learners of english were selected via a placement test. the participants were taught with classroom ...
15 صفحه اولtask-based language teaching in iran: a mixed study through constructing and validating a new questionnaire based on theoretical, sociocultural, and educational frameworks
جنبه های گوناگونی از زندگی در ایران را از جمله سبک زندگی، علم و امکانات فنی و تکنولوژیکی می توان کم یا بیش وارداتی در نظر گرفت. زبان انگلیسی و روش تدریس آن نیز از این قاعده مثتسنی نیست. با این حال گاهی سوال پیش می آید که آیا یک روش خاص با زیر ساخت های نظری، فرهنگی اجتماعی و آموزشی جامعه ایرانی سازگاری دارد یا خیر. این تحقیق بر اساس روش های ترکیبی انجام شده است.پرسش نامه ای نیز برای زبان آموزان ...
A time-dependent vehicle routing problem for disaster response phase in multi-graph-based network
Logistics planning in disaster response phase involves dispatching commodities such as medical materials, personnel, food, etc. to affected areas as soon as possible to accelerate the relief operations. Since transportation vehicles in disaster situations can be considered as scarce resources, thus, the efficient usage of them is substantially important. In this study, we provide a dynamic vehi...
متن کاملA swift neural network-based algorithm for demand estimation in concrete moment-resisting buildings
Rapid evaluation of demand parameters of different types of buildings is crucial for social restoration after damaging earthquakes. Previous studies proposed numerous methodologies to measure the performance of buildings for assessing the potential risk under the seismic hazard. However, time-consuming Nonlinear Response History Analysis (NRHA) barricaded implementing a prompt loss estimation ...
متن کاملconstruction and validation of a computerized adaptive translation test (a receptive based study)
آزمون انطباقی رایانه ای (cat) روشی نوین برای سنجش سطح علمی دانش آموزان می باشد. در حقیقت آزمون های رایانه ای با سرعت بالایی به سمت و سوی جایگزین عملی برای آزمون های کاغذی می روند (کینگزبری، هاوسر، 1993). مقاله حاضر به دنبال آزمون انطباقی رایانه ای برای ترجمه می باشد. بدین منظور دو پرسشنامه مشتمل بر 55 تست ترجمه میان 102 آزمودنی و 10 مدرس زبان انگلیسی پخش گردید. پرسشنامه اول میان 102 دانشجوی س...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Intelligent Transportation Systems
سال: 2022
ISSN: ['1558-0016', '1524-9050']
DOI: https://doi.org/10.1109/tits.2021.3056415